OVERARCHING QUESTION
How can we develop new consumer goods to meet today's health needs?

ACTIVITY SUMMARY
Students will explore the current health landscape of consumer packaged goods through the eyes of a product design engineer. They will collaborate to meet a need in the marketplace as they use the design thinking process to empathize; define the problem; ideate; and, prototype. They will conclude by completing a SWOT analysis on their product idea as they seek to identify areas for improvement.

MATERIALS
- A device with the ability to project: one for the instructor
- Sticky notes: three per student
- Devices with Internet access: at least enough for half the class
- Designing Solutions Handout: one per student

CHALLENGE
1. Make a large triple Venn Diagram on the board labeled "Physical Health," "Social Health," and "Mental Health." Explain that physical health refers to our body’s condition; social health refers to our ability to have relationships with other people; and, our mental health refers to our emotional and psychological wellbeing.

Distribute three sticky notes to each student and ask them to record at least one product or type of technology that they have used that connects to each category.

Then, invite them to place their sticky notes in the appropriate Venn Diagram categories on the board, and encourage them to consider if any of their ideas could be placed in the overlapping sections.
2. Once all products have been placed on the board, challenge the class to determine which ones could be considered consumer packaged goods (or CPGs).

Explain that CPGs are defined as products that customers use almost daily and restock frequently—such as food, beverage, makeup, cleaning products, clothing, and other household products. Their packaging is usually easily recognizable, and they are cheaper and replaced more frequently than durable goods, like cars. Proctor & Gamble (P&G) is the world’s largest consumer packaged goods company.

Work together to identify any sticky notes that do not fall into this category and set them aside.

3. Explain that students are about to work in teams of two or three as they take on the role of product design engineers. Product design engineers research, develop, and improve products—including their production and packaging—that we use in our everyday lives. Teams of product design engineers will work together to identify a health need and create a prototype for a consumer packaged good that meets this need.

4. Distribute one Designing Solutions Handout to each student, and elaborate on the challenge by reading aloud the bullets listed under Step 1: Define the Challenge.

5. Explain that students will have about 15 minutes to work together and complete this step. Before they begin, bring students’ attention to the Venn Diagram on the board and explain that empty spaces in the Venn Diagram could be a good indicator of where needs exist. Then, answer any questions students may have before you encourage them to get started.

DESIGN

1. Bring the class back together and explain that it’s time to develop a solution to the challenge. Call on a student to read the handout’s Step 2: Create a Design section aloud.

2. Explain that another key part of the design process is prototype development. A prototype is a mock-up, sketch, or model of the product that you plan to create. A prototype gives you a better understanding of your product’s design constraints and changes that may be needed to make the design functional. By collecting feedback and making changes early on, you save on production time and cost in the long run!

3. Tell the class that they will have about 15 minutes to complete the Design portion of their handout. Remind students to use a separate piece of paper to sketch and label a prototype that explains each of the requirements listed on this portion of the handout.

SOLVE

1. When there are about 20 minutes left in the class period, explain that it’s time for each group to complete a SWOT analysis. Tell the class that SWOT is an acronym for strengths, weaknesses, opportunities, and threats. It is an analysis that can be performed on a specific product or an overall business. It is helpful through all stages of product development because it provides an opportunity to analyze progress and identify areas for improvement. Today, students will perform a SWOT analysis to analyze the potential of their product idea and assess current competitors.
2. Write the following websites on the board:
 - us.pg.com/brands
 - selectusa.gov/consumer-goods-industry-united-states

 Then, read the handout’s *Step 3: Analyze Solutions* aloud. Explain that groups can use these websites to gain a better understanding of already-available consumer packaged goods as they complete their SWOT analysis.

3. Encourage groups to divide the workload and have each group member focus on one SWOT section. Then answer student questions, and give groups about 20 minutes to complete their research and share what they have learned with their group members.

4. As the class wraps up, ask each group to share a change they would make to their prototype based on the results of their SWOT analysis. If time permits, they may edit their prototype to include this change.

STANDARDS

Next Generation Science Standards

- Engineering Design:
 - ETS1-2: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
 - ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.
Step 1: Define the CHALLENGE

Your group’s challenge is to take on the role of product design engineers as you brainstorm ideas for a new health-related packaged consumer good in one of the following areas: Food, Beverage, Hygiene, or Household Products.

Once you have selected a health category, complete the following steps in the Design Thinking Process:

1. **Empathize:** Do your group members have any health needs in this category? What health needs may others have in this category?

2. **Define the Problem:** Focus on one need and create a problem statement that answers:
 - Who is experiencing this problem?
 - What is the problem?
 - Where does the problem occur?
 - Why does this problem matter?

 Sample Problem Statement for the Food Category: High school students (who) don’t have access to healthy snack products (what) when they are at school (where) so they eat too much junk food from the vending machines (why this matters).

3. **Ideate:** How could you solve your problem with a consumer packaged good? Brainstorm as many ideas as possible!

Jot all notes below.

Step 2: Create a DESIGN

Overview: The next step in the Design Thinking Process is to create a prototype. Choose one solution from above that your group believes best solves the problem, and then review the prototype requirements below.

Requirements: Your prototype must include:

1. A sketch of your product’s general design.
2. Labels or descriptions that explain what this product is and how it will work.
3. A sketch or description of how this product will be packaged and sold.

Complete your prototype on a separate piece of paper.
Step 3: Analyze SOLUTIONS

Use the websites provided as well as your background knowledge to answer the SWOT questions below:

Strengths: What gives our product a competitive advantage? What makes it unique? What does it have that other products don’t have? How will it help consumers solve problems?

Weaknesses: What weaknesses may hold this product back from success? What does our product not do? Would this impact the reputation of our product?

Opportunities: Are there any current trends that we could take advantage of? Are there any companies with whom we could try to partner? Are there any unfulfilled consumer needs that we could try to meet?

Threats: Who are our biggest competitors? What are they doing that we are not doing? Is there anything else outside of our control that could impact the success of our product?